

Welcome to taggo’s documentation!

Contents:

	taggo
	Introduction

	Requirements

	Docker

	FAQ

	Installation
	Stable release

	From sources

	Usage
	Making symlinks

	Difference between –filter and –filter-query

	Cleanup

	List tags

	Rename tags

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Debug travis

	Credits
	Project owner

	Contributors

	History
	0.13.0 (2018-03-04)

	0.12.0 (2018-03-03)

	0.11.0 (2018-02-20)

	0.10.0 (2017-11-04)

	0.9.0 (2017-10-21)

	0.8.0 (2017-10-21)

	0.4.0 (2017-10-08)

	0.2 (2017-10-07)

Indices and tables

	Index

	Module Index

	Search Page

taggo

[image: _images/taggo.svg]
 [https://pypi.python.org/pypi/taggo][image: _images/taggo1.svg]
 [https://travis-ci.org/xeor/taggo][image: _images/taggo2.svg]
 [https://coveralls.io/github/xeor/taggo?branch=master][image: Documentation Status]
 [https://taggo.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/xeor/taggo/]Tag organizer that uses names of files and folders to create symlinks.
Tags are defined by using #hashtags in the name. They can also be as many sub levels as you want, like #sub-hash-tag

note
This version is a completey different version than the old (https://github.com/xeor/taggo/tree/0.2).
The old version works for python 2 (but not 3). It also had config-file instead of parameters. Check out the
repo if you want it..

	Free software: MIT license

	Documentation: https://taggo.readthedocs.io

	Source: https://github.com/xeor/taggo

	Issues: https://github.com/xeor/taggo/issues

Introduction

This project is in beta stage, please report bugs :)

Any questions, thoughts, bugs are very welcome!

Requirements

	3.6+

Docker

Start the container with environment variables like CRON_TAGGO_0 with the format * * * * *|run ….

	CRON_TAGGO_n where n is a number, start at 0, have as many as you want.

	We take care automaticly that only 1 of each number is running at a time. Example, if one of your job is running every minute and it takes more than a minute to finish. It wont start the 2nd time.

	The environment variable is split in 2 by a |. The first param is a cron, the 2nd is the parameters sent to the taggo command.

FAQ

	Why the name taggo?

	It’s a tagging tool. It does stuff with tags. What do you suggest? Tagging, taggs, tags, tag2fold… no.. Taggo!

	Why do you want to create tags with symlinks?

	Because everyone have underestimated the power of tagging data.

	Photo filenames are just wasted, what does DCIM1234.jpg tell you?

	You know you miss one folder that contains all your dog pictures.

	You sould not depend on a 3rd party program/database to manage
your files/photos.

Installation

Stable release

To install taggo, run this command in your terminal:

$ pip install taggo

If you also want to download the required packages to run all metadata-addons, install taggo like this.

$ pip install taggo[all]

This is the preferred method to install taggo, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for taggo can be downloaded from the Github repo [https://github.com/xeor/taggo].

You can either clone the public repository:

$ git clone git://github.com/xeor/taggo

Or download the tarball [https://github.com/xeor/taggo/tarball/master]:

$ curl -OL https://github.com/xeor/taggo/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Taggo is most usefull if you use it on the commandline

Files and folders example layout:

root@4c95ee980234:/# find /data/
/data/
/data/2016
/data/2016/best taco #recipes-dinner.txt
/data/2016/python snippets #projects-programming-python.txt
/data/2017
/data/2017/#traveling-london
/data/2017/#traveling-london/places to visit.txt
/data/2017/#traveling-london/airplane tickets.pdf
/data/2015
/data/2015/chocolate cake #recipes-cake.txt
/data/2015/truffle chicken #recipes-dinner.txt
/data/2015/#important note.txt

Making symlinks

You can now run taggo to create symlinks to the tagged files:

root@4c95ee980234:/# pip install taggo
root@4c95ee980234:/# taggo run data tags
root@4c95ee980234:/# find tags/
tags/
tags/traveling
tags/traveling/london
tags/traveling/london/2017_#traveling-london - #traveling-london
tags/recipes
tags/recipes/cake
tags/recipes/cake/2015 - chocolate cake #recipes-cake.txt
tags/recipes/dinner
tags/recipes/dinner/2016 - best taco #recipes-dinner.txt
tags/recipes/dinner/2015 - truffle chicken #recipes-dinner.txt
tags/important
tags/important/2015 - #important note.txt
tags/projects
tags/projects/programming
tags/projects/programming/python
tags/projects/programming/python/2016 - python snippets #projects-programming-python.txt

notice that we have created a folder hieracy based on your tags with symlinks pointing to the correct files.

cli options (run)

–metadata-addon, –metadata-default

Add extra-data to use in filters or symlink-name. Use metadata-addon multiple times to add multiple.

Currently you can define:

	stat

	filetype

	exif

	md5

Use –metadata-default to define defaults if some of the addons is not producing data on everything.
Example –metadata-default key_should_exist=value

–auto-cleanup

Run cleanup (see own command) after we are done

–filter, –filter-mode

Filters are checked in the order of how expensive the metadata is to calculate.. If a filter have a match, and there are no more filter to check.
We will include or skip the file acordonly..

We do some string to object convertion, so if you define surtain strings, they behave specially. Example:

	–filter ‘value=None’: Matches if value is not defined.

Filters are split up with the key, an operator, then a value.
A filter can example be file-ext=jpeg, file-ext__contains=jpeg,png,gif.
We add exact as a operator if it is not specified. You specify an operator like above where contains is the operator.

Valid operators are:

	exact: The default (==)

	neq: Not equal (!=)

	contains: Value must be a comma-separated list of items to match against.

	icontains: Same as contains, but doesnt care about case

	startswith, istartswith, endswith, iendswith: Selfexplain

	gt, gte, lt, lte: GreaterThan, GreaterThanEqueal, LessThan, LessThanEqual. Values must be numbers!

	regex: Checks using python re.match()

Include (–filter-mode=include) are using logical AND. In other words, every –filter you define must match in order for it to be included.
Exclude used logical OR. So, if any of the exclude filter matches. It will be excluded.

If you are using a filter that we don’t have data on, example –filter non_existing=abc, we will ignore it.

–filter-query

If you install jmespath, you can use –filter-query. This is a very powerfull json query-language (http://jmespath.org/).
See what the pros and cons are on the comparison of –filter-query and –filter below.

Examples
* –filter-query=’tag.original == test’
* –filter-query=’contains(paths.*, archive) && “file-ext” == jpg’

–symlink-name, –symlink-name-file, –symlink-name-folder

Let say we have

	src folder: tests/test_files/

	a tagged file: tests/test_files/tagged/folders/i-3 #Hollydays-Christmas.jpg

	dst folder: temp

Then the template tags will become

	tag[original]: ‘Hollydays-Christmas’

	tag[as-folders]: ‘Hollydays/Christmas’

	tag-param[original]: If your tag was in the format #tag(param here), this would be “param here”

	rel_folders: tagged_folders

** Which is a _ separated list of folders from the file, all the way up to the dst folder
** It will be set to “root” if there are no list of relative paths
** We will not include the tagged folder itself if we this is a tagged folder.

	basename: i-3 #Hollydays-Christmas.jpg

** Name of the file

	paths[0]: folders

	paths[1]: tagged

	paths[2]:

	file-ext (only on –symlink-name-file): .jpg

	md5 (only on –symlink-name-file, need –metadata-addon md5): d41d8cd98f00b204e9800998ecf8427e

	stat (need –metadata-addon stat)

** This makes a bunch of file/folder stats available (using the python os.stat) function. Use –debug to see what you have.
** We will also make a _iso version of atime, ctime and mtime with iso8601 of the value
** As well as _year, _month and _day

	exif (only on –symlink-name-file, need –metadata-addon exif, and python package piexif installed)

** You should set the template-keys you depends on with default-values using –metadata-default, or you might easiely get errors
** These will be available (flat)
*** exif_…

Example

	–symlink-name, like –symlink-name “{tag[as-folders]}/{basename}”

	–symlink-name-file “{md5}” –symlink-name-folder “{tag[as-folders]}/{basename}” –metadata-addon md5

Note that if you want to use –symlink-name-file or –symlink-name-folder, both needs to be defined. Else –symlink-name is used.

Difference between –filter and –filter-query

TLDR: If possible, use –filter for speed :)

The longer story, is that –filter knows what you are filtering on, before it completes all the metadata-addon calculations.
This is because the correct filter gets checked after each metadata calculation. Example, when the stat addon is done, the stat filters are checked.
If the filter dictates that it should skip the file, no more metadata calculation is done for that file.
This is usefull and can save you some time. However, there are some big cons using the –filter:

	You wont be able to filter on data that is not flat. Example, there are no way to filter on paths[]…

	It is not that powerfull, and doing logical AND, OR, NOT and such are a pain.

The –filter-query is using jmespath, and it have a very powerfull querylanguage. It can handle more logic, and is much more powerfull than –filter.
However.. There are some cons:

	It depends on a 3rd party lib (pip install jmespath)

	The filter are checked once per file, after all metadata addons are calculated.

Both filter-types can however be combined.. So you can do a quick check using –filter, then a more advanced check later using –filter-query

Cleanup

Symlinks that are dead can be cleaned up easiely:

root@4c95ee980234:/# rm "/data/2016/best taco #recipes-dinner.txt"

root@4c95ee980234:/# taggo cleanup tags/
Deleting symlink /tags/recipes/dinner/2016 - best taco #recipes-dinner.txt

List tags

To list tags available in a source directory:

root@4c95ee980234:/# taggo info data/
Folder tags:
 traveling-london

File tags:
 important
 projects-programming-python
 recipes-cake
 recipes-dinner

Rename tags

You can also rename tags if you want them nested another way, or just got a typo:

root@4c95ee980234:/# taggo rename data/ traveling-london traveling-uk-london
Renaming: /data/2017/{#traveling-london -> #traveling-uk-london}

root@4c95ee980234:/# taggo cleanup tags/
Deleting symlink /tags/traveling/london/2017_#traveling-london - #traveling-london
Removing empty folder: /tags/traveling/london
Removing empty folder: /tags/traveling

root@4c95ee980234:/# taggo run data tags

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/xeor/taggo/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

taggo could always use more documentation, whether as part of the
official taggo docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/xeor/taggo/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up taggo for local development.

	Fork the taggo repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/taggo.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv taggo
$ cd taggo/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 taggo tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6, and up. Check
https://travis-ci.org/xeor/taggo/pull_requests
and make sure that the tests pass for all supported Python versions.

Debug travis

Start a custom build (trigger build) and input something like script: DEBUG=true pytest -k test_symlink_creation

Credits

Project owner

	Lars Solberg <lars.solberg@gmail.com>

Contributors

None yet. Why not be the first?

History

0.13.0 (2018-03-04)

	Dropping python 2.x support… Some things might end up being problematic to support. Like symlinks for directories in windows.
So instead of making a bunch of hacks around functionality. It is now dropped.

0.12.0 (2018-03-03)

	Making symlink name template configurable

	Symlink collision handling

	Logs to stdout/stderr depending on message severety

	Option to output log as json

	Option to prompt/wait after each symlink. Usefull for debugging

	Lots of things around symlink-name-templates, it’s now completly configurable.

	Possible to have extrainfo (used in symlink-name) from a tag parameter. Like #tag(info)

	Using powerful filters to not symlink certain files, or only symlink some files.

	Metadata-addons to use special file-info as in the symlink-name, like md5, stat, exif-data, …

	Output data as json, if you want a logparser to use it. Single-lines..

	Configurable collision handling. If symlink already exist and points to a different file.

	Making pip install taggo[all] to get all metadata-addon required libs

	–auto-cleanup option in run

	Log different messages to stdout or stderr

0.11.0 (2018-02-20)

	Fixing up docker image

0.10.0 (2017-11-04)

	Basic docker image

0.9.0 (2017-10-21)

	Python 2.7 support

0.8.0 (2017-10-21)

	Good test coverage

	Things are mostly working

	Rename functionality

	List/info

	Much more

0.4.0 (2017-10-08)

	Started a complete rewrite, mainly focusing on using python 3.6

	Test on PyPI.. Non working version.

0.2 (2017-10-07)

	Checkpoint of the old version working only with 2.x. This checkpoint contains code from many years ago.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to taggo’s documentation!

 		
 taggo

 		
 Introduction

 		
 Requirements

 		
 Docker

 		
 FAQ

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Making symlinks

 		
 cli options (run)

 		
 Difference between –filter and –filter-query

 		
 Cleanup

 		
 List tags

 		
 Rename tags

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Debug travis

 		
 Credits

 		
 Project owner

 		
 Contributors

 		
 History

 		
 0.13.0 (2018-03-04)

 		
 0.12.0 (2018-03-03)

 		
 0.11.0 (2018-02-20)

 		
 0.10.0 (2017-11-04)

 		
 0.9.0 (2017-10-21)

 		
 0.8.0 (2017-10-21)

 		
 0.4.0 (2017-10-08)

 		
 0.2 (2017-10-07)

_static/up.png

